Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.05.28.446200

Résumé

Several animal models are being used to explore important features of COVID-19, nevertheless none of them recapitulates all aspects of the disease in humans. The continuous refinement and development of other options of in vivo models are opportune, especially ones that are carried out at BSL-2 (Biosafety Level 2) laboratories. In this study, we investigated the suitability of the intranasal infection with the murine betacoronavirus MHV-3 to recapitulate multiple aspects of the pathogenesis of COVID-19 in C57BL/6J mice. We demonstrate that MHV-3 replicated in lungs 1 day after inoculation and triggered respiratory inflammation and dysfunction. This MHV-model of infection was further applied to highlight the critical role of TNF in cytokine-mediated coronavirus pathogenesis. Blocking TNF signaling by pharmacological and genetic strategies greatly increased the survival time and reduces lung injury of MHV-3-infected mice. In vitro studies showed that TNF blockage decreased SARS-CoV-2 replication in human epithelial lung cells and resulted in the lower release of IL-6 and IL-8 cytokines beyond TNF itself. Taken together, our results demonstrate that this model of MHV infection in mice is a useful BSL-2 screening platform for evaluating pathogenesis for human coronaviruses infections, such as COVID-19.


Sujets)
Infections à coronavirus , Lésion pulmonaire , Infection de laboratoire , COVID-19 , Inflammation
2.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.08.25.20182055

Résumé

Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with leukopenia and uncontrolled inflammatory response in critically ill patients. A better comprehension of SARS-CoV-2-induced monocytes death is essential for the identification of therapies capable to control the hyper-inflammation and reduce viral replication in patients with COVID-19. Here, we show that SARS-CoV-2 induces inflammasome activation and cell death by pyroptosis in human monocytes, experimentally infected and in patients under intensive care. Pyroptosis was dependent on caspase-1 engagement, prior to IL-1beta production and inflammatory cell death. Monocytes exposed to SARS-CoV-2 downregulate HLA-DR, suggesting a potential limitation to orchestrate the immune response. Our results originally describe the mechanism by which monocytes, a central cellular component recruited from peripheral blood to respiratory tract, succumb in patients with severe 2019 coronavirus disease (COVID-19), and emphasize the need for identifying anti-inflammatory and antiviral strategies to prevent SARS-CoV-2-induced pyroptosis.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche